Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
2.
Environ Health Perspect ; 132(3): 37002, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445892

RESUMO

BACKGROUND: Ambient nitrogen dioxide (NO2) and fine particulate matter with aerodynamic diameter ≤2.5µm (PM2.5) threaten public health in the US, and systemic racism has led to modern-day disparities in the distribution and associated health impacts of these pollutants. OBJECTIVES: Many studies on environmental injustices related to ambient air pollution focus only on disparities in pollutant concentrations or provide only an assessment of pollution or health disparities at a snapshot in time. In this study, we compare injustices in NO2- and PM2.5-attributable health burdens, considering NO2-attributable health impacts across the entire US; document changing disparities in these health burdens over time (2010-2019); and evaluate how more stringent air quality standards would reduce disparities in health impacts associated with these pollutants. METHODS: Through a health impact assessment, we quantified census tract-level variations in health outcomes attributable to NO2 and PM2.5 using health impact functions that combine demographic data from the US Census Bureau; two spatially resolved pollutant datasets, which fuse satellite data with physical and statistical models; and epidemiologically derived relative risk estimates and incidence rates from the Global Burden of Disease study. RESULTS: Despite overall decreases in the public health damages associated with NO2 and PM2.5, racial and ethnic relative disparities in NO2-attributable pediatric asthma and PM2.5-attributable premature mortality have widened in the US during the last decade. Racial relative disparities in PM2.5-attributable premature mortality and NO2-attributable pediatric asthma have increased by 16% and 19%, respectively, between 2010 and 2019. Similarly, ethnic relative disparities in PM2.5-attributable premature mortality have increased by 40% and NO2-attributable pediatric asthma by 10%. DISCUSSION: Enacting and attaining more stringent air quality standards for both pollutants could preferentially benefit the most marginalized and minoritized communities by greatly reducing racial and ethnic relative disparities in pollution-attributable health burdens in the US. Our methods provide a semi-observational approach to track changes in disparities in air pollution and associated health burdens across the US. https://doi.org/10.1289/EHP11900.


Assuntos
Poluição do Ar , Asma , Poluentes Ambientais , Criança , Humanos , Estados Unidos/epidemiologia , Poluição Ambiental , Poluição do Ar/efeitos adversos , Morbidade , Asma/epidemiologia
4.
Environ Int ; 185: 108560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38492497

RESUMO

Future changes in exposure to risk factors should impact mortality rates and population. However, studies commonly use mortality rates and population projections developed exogenously to the health impact assessment model used to quantify future health burdens attributable to environmental risks that are therefore invariant to projected exposure levels. This impacts the robustness of many future health burden estimates for environmental risk factors. This work describes an alternative methodology that more consistently represents the interaction between risk factor exposure, population and mortality rates, using ambient particulate air pollution (PM2.5) as a case study. A demographic model is described that estimates future population based on projected births, mortality and migration. Mortality rates are disaggregated between the fraction due to PM2.5 exposure and other factors for a historic year, and projected independently. Accounting for feedbacks between future risk factor exposure and population and mortality rates can greatly affect estimated future attributable health burdens. The demographic model estimates much larger PM2.5-attributable health burdens with constant 2019 PM2.5 (∼10.8 million deaths in 2050) compared to a model using exogenous population and mortality rate projections (∼7.3 million), largely due to differences in mortality rate projection methods. Demographic model-projected PM2.5-attributable mortality can accumulate substantially over time. For example, ∼71 million more people are estimated to be alive in 2050 when WHO guidelines (5 µg m-3) are achieved compared to constant 2019 PM2.5 concentrations. Accounting for feedbacks is more important in applications with relatively high future PM2.5 concentrations, and relatively large changes in non-PM2.5 mortality rates.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Material Particulado/análise , Poluição do Ar/efeitos adversos , Poluição Ambiental , Fatores de Risco , Poeira , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos
5.
Environ Int ; 185: 108416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38394913

RESUMO

We evaluated the sensitivity of estimated PM2.5 and NO2 health impacts to varying key input parameters and assumptions including: 1) the spatial scale at which impacts are estimated, 2) using either a single concentration-response function (CRF) or using racial/ethnic group specific CRFs from the same epidemiologic study, 3) assigning exposure to residents based on home, instead of home and work locations for the state of Colorado. We found that the spatial scale of the analysis influences the magnitude of NO2, but not PM2.5, attributable deaths. Using county-level predictions instead of 1 km2 predictions of NO2 resulted in a lower estimate of mortality attributable to NO2 by âˆ¼ 50 % for all of Colorado for each year between 2000 and 2020. Using an all-population CRF instead of racial/ethnic group specific CRFs results in a 130 % higher estimate of annual mortality attributable for the white population and a 40 % and 80 % lower estimate of mortality attributable to PM2.5 for Black and Hispanic residents, respectively. Using racial/ethnic group specific CRFs did not result in a different estimation of NO2 attributable mortality for white residents, but led to âˆ¼ 50 % lower estimates of mortality for Black residents, and 290 % lower estimate for Hispanic residents. Using NO2 based on home instead of home and workplace locations results in a smaller estimate of annual mortality attributable to NO2 for all of Colorado by 2 % each year and 0.3 % for PM2.5. Our results should be interpreted as an exercise to make methodological recommendations for future health impact assessments of pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Colorado/epidemiologia , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
6.
Geohealth ; 8(3): e2023GH000996, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419836

RESUMO

Access to urban natural space, including blue and greenspace, is associated with improved health. In 2021, the C40 Cities Climate Leadership Group set 2030 Urban Nature Declaration (UND) targets: "Quality Total Cover" (30% green area within each city) and "Equitable Spatial Distribution" (70% of the population living close to natural space). We evaluate progress toward these targets in the 96 C40 cities using globally available, high-resolution data sets for landcover and normalized difference vegetation index (NDVI). We use the European Space Agency (ESA)'s WorldCover data set to define greenspace with discrete landcover categories and ESA's Sentinel-2A to calculate NDVI, adding the "open water" landcover category to characterize total natural space. We compare 2020 levels of urban green and natural space to the two UND targets and predict the city-specific NDVI level consistent with the UND targets using linear regressions. The 96-city mean NDVI was 0.538 (range: 0.148, 0.739). Most (80%) cities meet the Quality Total Cover target, and nearly half (47%) meet the Equitable Spatial Distribution target. Landcover-measured greenspace and total natural space were strong (mean R 2 = 0.826) and moderate (mean R 2 = 0.597) predictors of NDVI and our NDVI-based natural space proximity measure, respectively. The 96-city mean predicted NDVI value of meeting the UND targets was 0.478 (range: 0.352-0.565) for Quality Total Cover and 0.660 (range: 0.498-0.767) for Equitable Spatial Distribution. Our translation of the area- and access-based metrics common in urban natural space targets into the NDVI metric used in epidemiology allows for quantifying the health benefits of achieving such targets.

7.
Geohealth ; 8(2): e2024GH001022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38371354

RESUMO

In 2023 human populations experienced multiple record-breaking climate events, with widespread impacts on human health and well-being. These events include extreme heat domes, drought, severe storms, flooding, and wildfires. Due to inherent lags in the climate system, we can expect such extremes to continue for multiple decades after reaching net zero carbon emissions. Unfortunately, despite these significant current and future impacts, funding for research in climate and health has lagged behind that for other geoscience and biomedical research. While some initial efforts from funding agencies are evident, there is still a significant need to increase the resources available for multidisciplinary research in the face of this issue. As a group of experts at this important intersection, we call for a more concerted effort to encourage interdisciplinary and policy-relevant investigations into the detrimental health effects of continued climate change.

8.
Geohealth ; 8(1): e2023GH000890, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38259818

RESUMO

Despite improvements in ambient air quality in the US in recent decades, many people still experience unhealthy levels of pollution. At present, national-level alert-day identification relies predominately on surface monitor networks and forecasters. Satellite-based estimates of surface air quality have rapidly advanced and have the capability to inform exposure-reducing actions to protect public health. At present, we lack a robust framework to quantify public health benefits of these advances in applications of satellite-based atmospheric composition data. Here, we assess possible health benefits of using geostationary satellite data, over polar orbiting satellite data, for identifying particulate air quality alert days (24hr PM2.5 > 35 µg m-3) in 2020. We find the more extensive spatiotemporal coverage of geostationary satellite data leads to a 60% increase in identification of person-alerts (alert days × population) in 2020 over polar-orbiting satellite data. We apply pre-existing estimates of PM2.5 exposure reduction by individual behavior modification and find these additional person-alerts may lead to 1,200 (800-1,500) or 54% more averted PM2.5-attributable premature deaths per year, if geostationary, instead of polar orbiting, satellite data alone are used to identify alert days. These health benefits have an associated economic value of 13 (8.8-17) billion dollars ($2019) per year. Our results highlight one of many potential applications of atmospheric composition data from geostationary satellites for improving public health. Identifying these applications has important implications for guiding use of current satellite data and planning future geostationary satellite missions.

9.
PNAS Nexus ; 3(1): pgad483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222466

RESUMO

The COVID-19 stay-at-home orders issued in the United States caused significant reductions in traffic and economic activities. To understand the pandemic's perturbations on US emissions and impacts on urban air quality, we developed near-real-time bottom-up emission inventories based on publicly available energy and economic datasets, simulated the emission changes in a chemical transport model, and evaluated air quality impacts against various observations. The COVID-19 pandemic affected US emissions across broad-based energy and economic sectors and the impacts persisted to 2021. Compared with 2019 business-as-usual emission scenario, COVID-19 perturbations resulted in annual decreases of 10-15% in emissions of ozone (O3) and fine particle (PM2.5) gas-phase precursors, which are about two to four times larger than long-term annual trends during 2010-2019. While significant COVID-induced reductions in transportation and industrial activities, particularly in April-June 2020, resulted in overall national decreases in air pollutants, meteorological variability across the nation led to local increases or decreases of air pollutants, and mixed air quality changes across the United States between 2019 and 2020. Over a full year (April 2020 to March 2021), COVID-induced emission reductions led to 3-4% decreases in national population-weighted annual fourth maximum of daily maximum 8-h average O3 and annual PM2.5. Assuming these emission reductions could be maintained in the future, the result would be a 4-5% decrease in premature mortality attributable to ambient air pollution, suggesting that continued efforts to mitigate gaseous pollutants from anthropogenic sources can further protect human health from air pollution in the future.

10.
Environ Sci Technol ; 58(1): 280-290, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153403

RESUMO

While human mobility plays a crucial role in determining ambient air pollution exposures and health risks, research to date has assessed risks on the basis of almost solely residential location. Here, we leveraged a database of ∼128-144 million workers in the United States and published ambient PM2.5 data between 2011 and 2018 to explore how incorporating information on both workplace and residential location changes our understanding of disparities in air pollution exposure. In general, we observed higher workplace exposures relative to home exposures, as well as increased exposures for nonwhite and less educated workers relative to the national average. Workplace exposure disparities were higher among racial and ethnic groups and job types than by income, education, age, and sex. Not considering workplace exposures can lead to systematic underestimations in disparities in exposure among these subpopulations. We also quantified the error in assigning workers home instead of a weighted home-and-work exposure. We observed that biases in associations between PM2.5 and health impacts by using home instead of home-and-work exposure were the highest among urban, younger populations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Estados Unidos , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Poluição do Ar/análise , Bases de Dados Factuais , Material Particulado/análise
11.
Lancet Planet Health ; 7(12): e963-e975, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38056967

RESUMO

BACKGROUND: Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA. METHODS: In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface observations. We estimated the annual PM2·5-attributable and black carbon-attributable mortality burden at each 1-km2 grid using concentration-response functions collected from a national cohort study and a meta-analysis study, respectively. We investigated the spatiotemporal linear-regressed trends in PM2·5 and black carbon pollution and their associated premature deaths from 2000 to 2020, and the impact of wildfires on air quality and public health. FINDINGS: Our results showed that PM2·5 and black carbon estimates are reliable, with sample-based cross-validated coefficients of determination of 0·82 and 0·80, respectively, for daily estimates (0·97 and 0·95 for monthly estimates). Both PM2·5 and black carbon in the USA showed significantly decreasing trends overall during 2000 to 2020 (22% decrease for PM2·5 and 11% decrease for black carbon), leading to a reduction of around 4200 premature deaths per year (95% CI 2960-5050). However, since 2010, the decreasing trends of fine particles and premature deaths have reversed to increase in the western USA (55% increase in PM2·5, 86% increase in black carbon, and increase of 670 premature deaths [460-810]), while remaining mostly unchanged in the eastern USA. The western USA showed large interannual fluctuations that were attributable to the increasing incidence of wildfires. Furthermore, the black carbon-to-PM2·5 mass ratio increased annually by 2·4% across the USA, mainly due to increasing wildfire emissions in the western USA and more rapid reductions of other components in the eastern USA, suggesting a potential increase in the relative toxicity of PM2·5. 100% of populated areas in the USA have experienced at least one day of PM2·5 pollution exceeding the daily air quality guideline level of 15 µg/m3 during 2000-2020, with 99% experiencing at least 7 days and 85% experiencing at least 30 days. The recent widespread wildfires have greatly increased the daily exposure risks in the western USA, and have also impacted the midwestern USA due to the long-range transport of smoke. INTERPRETATION: Wildfires have become increasingly intensive and frequent in the western USA, resulting in a significant increase in smoke-related emissions in populated areas. This increase is likely to have contributed to a decline in air quality and an increase in attributable mortality. Reducing fire risk via effective policies besides mitigation of climate warming, such as wildfire prevention and management, forest restoration, and new revenue generation, could substantially improve air quality and public health in the coming decades. FUNDING: National Aeronautics and Space Administration (NASA) Applied Science programme, NASA MODIS maintenance programme, NASA MAIA satellite mission programme, NASA GMAO core fund, National Oceanic and Atmospheric Administration (NOAA) GEO-XO project, NOAA Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) programme, and NOAA Educational Partnership Program with Minority Serving Institutions.


Assuntos
Poluentes Atmosféricos , Aprendizado Profundo , Material Particulado , Fuligem , Incêndios Florestais , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Carbono/efeitos adversos , Carbono/análise , Estudos de Coortes , Material Particulado/efeitos adversos , Material Particulado/análise , Fuligem/efeitos adversos , Fuligem/análise , Incêndios Florestais/mortalidade , Estados Unidos/epidemiologia , Mortalidade/tendências
12.
Environ Sci Technol Lett ; 10(12): 1159-1164, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38106529

RESUMO

Nitrogen dioxide (NO2) is a regulated pollutant that is associated with numerous health impacts. Recent advances in epidemiology indicate high confidence linking NO2 exposure with increased mortality, an association that recent studies suggest persists even at concentrations below regulatory thresholds. While large disparities in NO2 exposure among population subgroups have been reported, U.S. NO2-attributable mortality rates and their disparities remain unquantified. Here we provide the first estimate of NO2-attributable all-cause mortality across the contiguous U.S. (CONUS) at the census tract-level. We leverage fine-scale, satellite-informed, land use regression model NO2 concentrations and census tract-level baseline mortality data to characterize the associated disparities among different racial/ethnic subgroups. Across CONUS, we estimate that the NO2-attributable all-cause mortality is ∼170,850 (95% confidence interval: 43,970, 251,330) premature deaths yr-1 with large variability across census tracts and within individual cities. Additionally, we find that higher NO2 concentrations and underlying susceptibilities for predominately Black communities lead to NO2-attributable mortality rates that are ∼47% higher compared to CONUS-wide average rates. Our results highlight the substantial U.S. NO2 mortality burden, particularly in marginalized communities, and motivate adoption of more stringent standards to protect public health.

13.
Environ Health Perspect ; 131(12): 125003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109120

RESUMO

BACKGROUND: Recently enacted environmental justice policies in the United States at the state and federal level emphasize addressing place-based inequities, including persistent disparities in air pollution exposure and associated health impacts. Advances in air quality measurement, models, and analytic methods have demonstrated the importance of finer-scale data and analysis in accurately quantifying the extent of inequity in intraurban pollution exposure, although the necessary degree of spatial resolution remains a complex and context-dependent question. OBJECTIVE: The objectives of this commentary were to a) discuss ways to maximize and evaluate the effectiveness of efforts to reduce air pollution disparities, and b) argue that environmental regulators must employ improved methods to project, measure, and track the distributional impacts of new policies at finer geographic and temporal scales. DISCUSSION: The historic federal investments from the Inflation Reduction Act, the Infrastructure Investment and Jobs Act, and the Biden Administration's commitment to Justice40 present an unprecedented opportunity to advance climate and energy policies that deliver real reductions in pollution-related health inequities. In our opinion, scientists, advocates, policymakers, and implementing agencies must work together to harness critical advances in air quality measurements, models, and analytic methods to ensure success. https://doi.org/10.1289/EHP13063.


Assuntos
Poluição do Ar , Poluição do Ar/prevenção & controle , Poluição Ambiental , Clima , Política Ambiental
14.
Environ Sci Technol ; 57(48): 19532-19544, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934506

RESUMO

In the United States (U.S.), studies on nitrogen dioxide (NO2) trends and pollution-attributable health effects have historically used measurements from in situ monitors, which have limited geographical coverage and leave 66% of urban areas unmonitored. Novel tools, including remotely sensed NO2 measurements and estimates of NO2 estimates from land-use regression and photochemical models, can aid in assessing NO2 exposure gradients, leveraging their complete spatial coverage. Using these data sets, we find that Black, Hispanic, Asian, and multiracial populations experience NO2 levels 15-50% higher than the national average in 2019, whereas the non-Hispanic White population is consistently exposed to levels that are 5-15% lower than the national average. By contrast, the in situ monitoring network indicates more moderate ethnoracial NO2 disparities and different rankings of the least- to most-exposed ethnoracial population subgroup. Validating these spatially complete data sets against in situ observations reveals similar performance, indicating that all these data sets can be used to understand spatial variations in NO2. Integrating in situ monitoring, satellite data, statistical models, and photochemical models can provide a semiobservational record, complete geospatial coverage, and increasingly high spatial resolution, enhancing future efforts to characterize, map, and track exposure and inequality for highly spatially heterogeneous pollutants like NO2.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Estados Unidos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Dióxido de Nitrogênio/análise , Monitoramento Ambiental , Exposição Ambiental , Material Particulado/análise
15.
Nat Commun ; 14(1): 5349, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660164

RESUMO

Ambient fine particulate matter (PM2.5) is the world's leading environmental health risk factor. Quantification is needed of regional contributions to changes in global PM2.5 exposure. Here we interpret satellite-derived PM2.5 estimates over 1998-2019 and find a reversal of previous growth in global PM2.5 air pollution, which is quantitatively attributed to contributions from 13 regions. Global population-weighted (PW) PM2.5 exposure, related to both pollution levels and population size, increased from 1998 (28.3 µg/m3) to a peak in 2011 (38.9 µg/m3) and decreased steadily afterwards (34.7 µg/m3 in 2019). Post-2011 change was related to exposure reduction in China and slowed exposure growth in other regions (especially South Asia, the Middle East and Africa). The post-2011 exposure reduction contributes to stagnation of growth in global PM2.5-attributable mortality and increasing health benefits per µg/m3 marginal reduction in exposure, implying increasing urgency and benefits of PM2.5 mitigation with aging population and cleaner air.


Assuntos
Poluição do Ar , Poluição do Ar/efeitos adversos , Poluição Ambiental , África , Material Particulado/efeitos adversos
16.
Sci Data ; 10(1): 367, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286690

RESUMO

An impressive number of COVID-19 data catalogs exist. However, none are fully optimized for data science applications. Inconsistent naming and data conventions, uneven quality control, and lack of alignment between disease data and potential predictors pose barriers to robust modeling and analysis. To address this gap, we generated a unified dataset that integrates and implements quality checks of the data from numerous leading sources of COVID-19 epidemiological and environmental data. We use a globally consistent hierarchy of administrative units to facilitate analysis within and across countries. The dataset applies this unified hierarchy to align COVID-19 epidemiological data with a number of other data types relevant to understanding and predicting COVID-19 risk, including hydrometeorological data, air quality, information on COVID-19 control policies, vaccine data, and key demographic characteristics.


Assuntos
COVID-19 , Humanos , Poluição do Ar , COVID-19/epidemiologia , Pandemias , Meio Ambiente
18.
Environ Health Perspect ; 131(3): 37005, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36884005

RESUMO

BACKGROUND: Emissions from coal power plants have decreased over recent decades due to regulations and economics affecting costs of providing electricity generated by coal vis-à-vis its alternatives. These changes have improved regional air quality, but questions remain about whether benefits have accrued equitably across population groups. OBJECTIVES: We aimed to quantify nationwide long-term changes in exposure to particulate matter (PM) with an aerodynamic diameter ≤2.5µm (PM2.5) associated with coal power plant SO2 emissions. We linked exposure reductions with three specific actions taken at individual power plants: scrubber installations, reduced operations, and retirements. We assessed how emissions changes in different locations have influenced exposure inequities, extending previous source-specific environmental justice analyses by accounting for location-specific differences in racial/ethnic population distributions. METHODS: We developed a data set of annual PM2.5 source impacts ("coal PM2.5") associated with SO2 emissions at each of 1,237 U.S. coal-fired power plants across 1999-2020. We linked population-weighted exposure with information about each coal unit's operational and emissions-control status. We calculate changes in both relative and absolute exposure differences across demographic groups. RESULTS: Nationwide population-weighted coal PM2.5 declined from 1.96µg/m3 in 1999 to 0.06 µg/m3 in 2020. Between 2007 and 2010, most of the exposure reduction is attributable to SO2 scrubber installations, and after 2010 most of the decrease is attributable to retirements. Black populations in the South and North Central United States and Native American populations in the western United States were inequitably exposed early in the study period. Although inequities decreased with falling emissions, facilities in states across the North Central United States continue to inequitably expose Black populations, and Native populations are inequitably exposed to emissions from facilities in the West. DISCUSSION: We show that air quality controls, operational adjustments, and retirements since 1999 led to reduced exposure to coal power plant related PM2.5. Reduced exposure improved equity overall, but some populations continue to be inequitably exposed to PM2.5 associated with facilities in the North Central and western United States. https://doi.org/10.1289/EHP11605.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Estados Unidos , Poluentes Atmosféricos/análise , Carvão Mineral , Poluição do Ar/análise , Material Particulado/análise , Centrais Elétricas
19.
Geohealth ; 7(1): e2022GH000713, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618583

RESUMO

Exposure to air pollution is a leading risk factor for premature death globally; however, the complexity of its formation and the diversity of its sources can make it difficult to address. The Group of Twenty (G20) countries are a collection of the world's largest and most influential economies and are uniquely poised to take action to reduce the global health burden associated with air pollution. We present a framework capable of simultaneously identifying regional and sectoral sources of the health impacts associated with two air pollutants, fine particulate matter (PM2.5) and ozone (O3) in G20 countries; this framework is also used to assess the health impacts associated with emission reductions. This approach combines GEOS-Chem adjoint sensitivities, satellite-derived data, and a new framework designed to better characterize the non-linear relationship between O3 exposures and nitrogen oxides emissions. From this approach, we estimate that a 50% reduction of land transportation emissions by 2040 would result in 251 thousand premature deaths avoided in G20 countries. These premature deaths would be attributable equally to reductions in PM2.5 and O3 exposure which make up 51% and 49% of the potential benefits, respectively. In our second application, we estimate that the energy generation related co-benefits associated with G20 countries staying on pace with their net-zero carbon dioxide targets would be 290 thousand premature deaths avoided in 2040; action by India (47%) would result in the most benefits of any country and a majority of these avoided deaths would be attributable to reductions in PM2.5 exposure (68%).

20.
Sci Total Environ ; 858(Pt 2): 160064, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356738

RESUMO

Ground-level ozone (O3), fine particles (PM2.5), and nitrogen dioxide (NO2) are the most harmful urban air pollutants regarding human health effects. Here, we aimed at assessing trends in concurrent exposure of global urban population to O3, PM2.5, and NO2 between 2000 and 2019. PM2.5, NO2, and O3 mean concentrations and summertime mean of the daily maximum 8-h values (O3 MDA8) were analyzed (Mann-Kendall test) using data from a global reanalysis, covering 13,160 urban areas, and a ground-based monitoring network (Tropospheric Ozone Assessment Report), collating surface O3 observations at nearly 10,000 stations worldwide. At global scale, PM2.5 exposures declined slightly from 2000 to 2019 (on average, - 0.2 % year-1), with 65 % of cities showing rising levels. Improvements were observed in the Eastern US, Europe, Southeast China, and Japan, while the Middle East, sub-Saharan Africa, and South Asia experienced increases. The annual NO2 mean concentrations increased globally at 71 % of cities (on average, +0.4 % year-1), with improvements in North America and Europe, and increases in exposures in sub-Saharan Africa, Middle East, and South Asia regions, in line with socioeconomic development. Global exposure of urban population to O3 increased (on average, +0.8 % year-1 at 89 % of stations), due to lower O3 titration by NO. The summertime O3 MDA8 rose at 74 % of cities worldwide (on average, +0.6 % year-1), while a decline was observed in North America, Northern Europe, and Southeast China, due to the reduction in precursor emissions. The highest O3 MDA8 increases (>3 % year-1) occurred in Equatorial Africa, South Korea, and India. To reach air quality standards and mitigate outdoor air pollution effects, actions are urgently needed at all governance levels. More air quality monitors should be installed in cities, particularly in Africa, for improving risk and exposure assessments, concurrently with implementation of effective emission control policies that will consider regional socioeconomic imbalances.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Ozônio/análise , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...